निम्नलिखित घनों को प्रसारित रूप में लिखिए
$\left[x-\frac{2}{3} y\right]^{3}$
Using Identity $VI$ and Identity $VII,$ we have
$(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y),$ and $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$\left(x-\frac{2}{3} y\right)^{3}=x^{3}-\left(\frac{2}{3} y\right)^{3}-3(x)\left(\frac{2}{3} y\right)\left[x-\frac{2}{3} y\right]$
$= x ^{3}-\frac{8}{27} y ^{3}-2 xy \left[x-\frac{2}{3} y \right] $ $[$ Using Identity $VII ]$
$=x^{3}-\frac{8}{27} y^{3}-\left[(2 x y) x-(2 x y) \frac{2}{3} y\right]=x^{3}-\frac{8}{27} y^{3}+\left[2 x^{2} y-\frac{4}{3} x y^{2}\right]$
$=x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2}$
उपयुक्त सर्वसमिकाएँ प्रयोग करके निम्नलिखित का गुणनखंडन कीजिए
$4 y^{2}-4 y+1$
गुणनखंड प्रमेय की सहायता से $y^{2}-5 y+6$ का गुणनखंडन कीजिए।
निम्नलिखित घनों को प्रसारित रूप में लिखिए
$(2 a-3 b)^{3}$
निम्नलिखित में से प्रत्येक का गुणनखंडन कीजिए
$8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$
$8 x^{3}+y^{3}+27 z^{3}-18 x y z$ का गुणनखंडन कीजिए।